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Main Contributions

First algorithm to find optimal DBCs
Relies on the enumeration of all the chains
representing a given integer

New concept of Controlled DBC

Create a random chain from scratch

Enumerate all the chains with given properties
to select the parameters



Scalar Multiplication

Definition. Given an integer n and a point P on
a curve, a scalar multiplication consists in com-
puting

nP=P+-.---4+ P
L ——

n times

It is the core operation in most ECC protocols



Double-and-Add Method

The standard way to compute [n|P is the double-
and-add method

The method uses the following operations:

e addition P + (), when P # £+ — ()

e doubling [2]|P

It relies on the binary representation of n



Double-Base Number System

Represent the scalar n as

14
n = Z C%Qa":?)bi, with ¢, = +1
=1

Such an expansion can be easily found with a
egreedy approach



Double-Base Number System

Example.

We have
841232 = 21036 1 9736 | 9136 __ 9232 | 9

DBNS expansions are in general not very well
suited to compute scalar multiplications



Double-Base Chain

Represent the scalar n as

14
n = Z C%Qa":?)bi, with ¢, = +1
=1

a1 =00 = ...2ap and by =2 by > ... > by

This simple contraint makes the computation of
in|P a lot more straightforward



Double-Base Chain

Example.

We have

8419232 = 21036 1 9736 1 9136 33 32,3 1

From which we compute



Double-Base Chain

Example.

We have

841232 = 2'03% + 2739 1 2135 33 32 43 -1
From which we compute

25| P



Double-Base Chain

Example.

We have

841232 = 2103% + 2739 1 2136 33 32 431
From which we compute

2°)([2°]P + P)



Double-Base Chain

Example.

We have

841232 = 2103% + 2739 1 2135 3% 32 43 -1
From which we compute

2'3%)([26)((2°]P + P) + P)



Double-Base Chain

Example.

We have

841232 = 2103% + 2739 1 2136 35 32 431
From which we compute

31([213%]([2°]([2°]P + P) + P) — P)

and so on



Double-Base Chain

Can we do better?



Double-Base Chain

Can we do better?
This question needs to be refined

Indeed, assume that
841232 = 201301 _ 202302

for very large a4, b1, a2, bo

That is not going to help computing [841232|P
efficiently



Double-Base Chain

Terminology.
Consider the DBC

n = 20135 1 ;992302 ... 4 0% 3be
Then

291351 ig the leading factor

¢ is the length



Double-Base Chain

The leading factor and the length of a DBC fully
capture the complexity of computing [n|P with
this DBC

We need a; doublings, b1 triplings and ¢ — 1 ad-
ditions to compute [n|P



Double-Base Chain

Detfinition. Take a scalar n and two integers
a and b

A DBC with a leading factor dividing 2%3° is
optimal for n if its length ¢ is minimal across
all the DBCs representing n and having a lead-
ing factor dividing 2¢3°



A Partition Problem

In 1979, Erdés and Loxton study the number p(n)
of partitions of n of the form

n=dr+---+do+d; with d1|d2“dk



A Partition Problem

In 1979, Erdés and Loxton study the number p(n)
of partitions of n of the form

n=dr+---+do+d; with d1|d2“dk

For that, they introduce p;(n) as the number of
partitions of n of the form

n=dy+-+do+1 with do|---|ds



A Partition Problem

They observe that

p(n) = p1(n) + p1(n + 1)



A Partition Problem

They observe that

p(n) = p1(n) + p1(n + 1)

and that




Another Partition Problem

Let q(a, b,n) the number of signed partitions of n
of the form

’n:dk::dk_lzz--- dg::dl

with dl‘d2‘°-°‘dk|2a3b

It is clear that q(a,b,n) is the number of DBCs
with a leading factor dividing 2¢3% and represent-
ing n



Another Partition Problem

We also introduce ¢1(a, b,n) for

n=d,t+tdp_1t---+do+1
with dg | --- | dy | 293

and q¢i(a,b,n) for
n=d,t+dp_1t---+do—1

with do | --- | dj | 293°



Another Partition Problem

We have

Q(aa ba ’I’L) — 1 (afv ba ’I’L) + 41 (afv ba n) - 41 (afv ba n - 1)

— 1
qgi(a,b,n) = (a — vala(d), b — vals(d), " )

d
d|gcd(n 1,2%3%)
d>1

1
n (a —valy(d), b — vals(d), )

d
d|gcd(n 1,293%)
d>1




Another Partition Problem

We have

Q(aa ba ’I’L) — 1 (afv ba ’I’L) + 41 (afv ba n) - 41 (afv ba n - 1)

n+1
q1 (CL, ba n) — Z q1 (CL — ValQ(d)7 b — Val?)(d)a d )

d|ged(n+1,2*3%)
d>1

1
+ (a — vala(d), b — vals(d), nT )

d
d|gcd(n—|—1 2%30)
d>1




Another Partition Problem

We deduce a recursive algorithm to compute
q(a,b,n)



Another Partition Problem

We deduce a recursive algorithm to compute
q(a,b,n)

Furthermore, a simple modification allows to
keep track of the length of the DBCs

Let q(a, b, /,n) be the number of signed parti-
tions of n of the form

n:dk::dk_l ::---::dg::dl

with dq |do|--- | di | 223° and k </



Another Partition Problem

We have

q(a7 b? E? n) —

Q1(aa baga n)
q (CL, baga n)
qi(a, b,f + 1,?’L + 1)

=

Additionally, ¢q1(a, b, ¢,n) and qi(a, b, £,n) sat-
isty similar relations than previously



Another Partition Problem

Algorithm. g¢i(a,b,l,n)

INPUT: An integer n and parameters a, b, and /.
OuTpuT: Number of DBCs ending with 1 with a leading factor dividing 2¢3°,
and length less than or equal to /.

1. ifn<0ora<Oorb<Oor <0 then return 0

2. elseifn=1 then

3. if a > 0and b >0 then return min(1, max(0,?))
4. else return 0

5. elseifn>1 then

6. D + ged(n —1,243%)

7. s+ 0

8. for each divisor d > 1 of D do

9. s < s+ q1(a — vala(d),b — vals(d), ¢ — 1, 2=1)
10. s < s+ gi(a — valz(d),b — vals(d), £ — 1, 2)
11. return s



Another Partition Problem

Algorithm. g¢i(a,b,t,n)

INPUT: An integer n and parameters a, b, and /.
OutpuT: Number of DBCs ending with —1 with a leading factor dividing
2¢3% and a length less than or equal to /.

1. ifn<0ora<Oorb<O0or ¢<0 then return 0

2. elseifn=1 then

3. if a > 0 and b > 0 then return min(a, max(0,¢— 1))
4. else return 0

5. elseifn>1 then

6. D <+ ged(n + 1,243%)

7. s+ 0

8. for each divisor d > 1 of D do

9. s < s+ qi(a — vala(d),b — vals(d), ¢ — 1, 21)
10. 3(—S—I—qi(a—valz(d),b—valg(d),ﬁ— 1,"7“)
11. return s



Optimal DBC

Given n, a and b, we can then compute
q(a,b,f,n) for increasing values of ¢

This gives the length of an optimal DBC
for n

Another straightforward modification in the

algorithm allows to actually return an op-
timal DBC



Optimal DBC

Example. We find that ¢(12,6,4,841232) = 0
and ¢(12,6,5,841232) = 3

In other words, using at most 12 doublings and 6
triplings, the shortest chain to compute [841232| P
is of length 5

The algorithm returns

841232 = 21036 1 9736 | 9434 | 9432 _ 94




Optimal DBC

In general, it is quite fast to find optimal chains
of length up to 12

It took several hours to find an optimal chain of
length 18 corresponding to a random integer of
size 69 bits

It is not realistic to expect finding an optimal
DBC for a scalar of say size 200 bits



Controlled DBC

Instead of generating a random integer n and
then trying to find a short DBC to represent it

Select a leading factor 2¢3° and a length ¢ then
generate a random DBC from scratch

The question then becomes:

What value of £ is long enough?



Controlled DBC
Fix a, b, ¢

1. Determine the interval of integers that can
be represented with those chains



Controlled DBC

Fix a, b, ¢

1. Determine the interval of integers that can
be represented with those chains

2. Enumerate the total number of DBCs with
leading factor 2¢3° and length /



Controlled DBC

Fix a, b, ¢

1. Determine the interval of integers that can
be represented with those chains

2. Enumerate the total number of DBCs with
leading factor 2¢3° and length /

3. Estimate the redundancy, i.e. how many
chains represent the same integer on average



1. Interval

Any DBC with leading factor 223° belongs to
the interval

30+ 17
)

~ Qb
3 + ]" 2a—|—136




2. Enumeration

Definition.

Let Sy(a, b) denote the number of unsigned DBCs
of length ¢ with a leading factor equal to 223°

The quantity we are interested in is 2715 (a, b)



2. Enumeration

Definition.

Let Sy(a, b) denote the number of unsigned DBCs
of length ¢ with a leading factor equal to 223°

The quantity we are interested in is 2715 (a, b)

2@3() + 20,2362 4o 2ag3bg



2. Enumeration

Definition.

Let Sy(a, b) denote the number of unsigned DBCs
of length ¢ with a leading factor equal to 2¢3°

The quantity we are interested in is 2715 (a, b)

20430 4 2023%2 4 ... 4 g 3bs




2. Enumeration

We introduce Ty(a,b) the number of unsigned
DBCs of length £ with a leading factor dividing

2a3b
We oberve that

Ser1(a,b) =Ty(a,b) — Se(a,b)

Tg_|_1a b > > —’L—|—1 b j‘|‘1) }Sg(’l/,j)
1=0 7=0




2. Enumeration

We also have

S1(a,b) =1 and Ti(a,b) =(a+1)(b+ 1)



2. Enumeration

We also have

S1(a,b) =1 and Ti(a,b) =(a+1)(b+ 1)

Together with the last two equations, these re-
lations allow to compute Sy(a, b) recursively for
any tuple (a, b, ¢)

The actual computation can be carried out ef-
ficiently using some precomputations and La-
grange interpolation



3. Redundancy

The most difficult part is to estimate the redun-
dancy of DBCs

We have run simulations and deduced heuristics



3. Redundancy

For a < 30, b < 12 and ¢ < 12 we have com-
puted the average number of representations of

an integer with a DBC having leading factor
equal to 223° and length /¢



3. Redundancy

For a < 30, b < 12 and ¢ < 12 we have com-
puted the average number of representations of

an integer with a DBC having leading factor
equal to 223° and length /¢

This was done with the algorithms explained in
the first part



3. Redundancy

For a < 30, b < 12 and ¢ < 12 we have com-
puted the average number of representations of

an integer with a DBC having leading factor
equal to 223° and length /¢

This was done with the algorithms explained in
the first part

The data fit an exponential regression of the
form N = exp(0.4717¢ — 1.1683) with R* =
0.9975
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Near Optimal Length

Take a leading factor equal to 223% ~ 2¢

Definition.

The Near Optimal Length is the value of £ mini-
mizing

2715, (a, b) — 24 [exp(0.4717¢ — 1.1683)]



Comparison with Greedy

Consider scalar of size ¢ bits, fix a between ¢/2 and
t and consider the corresponding b (243% ~ 21)

Compute the Near Optimal Length

Compare with the average length of the DBCs
returned by the greedy method

The Near Optimal Length is 20 to 30% shorter
than Chains returned by the greedy method
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Near Optimal Controlled DBC

Given a particular coordinate system and a par-
ticular size of scalar

[t is possible to derive the optimal parameters (a,
b and /) which minimizes the complexity of the
scalar multiplication for that system

We have done that with Inverted Edwards coor-
dinates



Near Optimal Controlled DBC

Size

Near Optimal

LF

¢ Cost

LF

Greedy
/

Cost

192
256
320
384
448
512

2151326
2198337
2260338
2297355
2369350

2406367

37 1570.20
48 2092.60
62 2612.40
71 3128.40
86 3645.80
95 4161.80

2116348
2153365

2180389

22173106

22543123

44.63
H&8.73
70.80
84.74
98.73

1688.74
2249.62
2816.04
3375.51
3935.42

22863143 1192 07 4495.22




Conclusion

We have enumerated the number of DBCs
representing a given integer

This gives rise to a new method to find optimal
DBC(C’s

We have also enumerated the number of
different DBCs with given parameters

This gives rise to a new scalar multiplication
method where the scalar is selected in DBC

format directly



Future Work

— Improve the optimal DBC algorithm (dynamic
programming, pruning, etc)

— Analyze the redundancy of DBCs more pre-
cisely

— Given a, b and /¢, return uniformly distributed
DBCs with leading factor 2¢3% and length /¢



(Questions
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